We’ve trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests.

ChatGPT is a sibling model to InstructGPT, which is trained to follow an instruction in a prompt and provide a detailed response.

We are excited to introduce ChatGPT to get users’ feedback and learn about its strengths and weaknesses. During the research preview, usage of ChatGPT is free. Try it now at chatgpt.com(opens in a new window).

Samples

User
this code is not working like i expect — how do i fix it?
resultWorkerErr := make(chan error) defer close(resultWorkerErr) go func() { defer cancel() resultWorkerErr <- b.resultWorker(ctx) }() err := b.worker(ctx) cancel() if err == nil { return <-resultWorkerErr } return multierror.Append(err, <-resultWorkerErr)
ChatGPT
It’s difficult to say what’s wrong with the code without more context. Can you provide more information about what the code is supposed to do and what isn’t working as expected? Also, is this the entire code or just a part of it?
User
just part of it — the error never surfaces. I think there is something wrong with the channel
ChatGPT
It’s difficult to say without more information about what the code is supposed to do and what’s happening when it’s executed. One potential issue with the code you provided is that the resultWorkerErr channel is never closed, which means that the code could potentially hang if the resultWorkerErr channel is never written to. This could happen if b.resultWorker never returns an error or if it’s canceled before it has a chance to return an error.
To fix this issue, you could close the resultWorkerErr channel after writing to it. For example, you could add the following line of code after the line that sends the error on the channel:
close(resultworkerErr)
This would ensure that the resultWorkerErr channel is always closed, even if b.resultWorker never returns an error. Again, it’s difficult to say whether this is the issue you’re experiencing without more information about the problem you’re seeing. Can you provide more details about what’s happening when you run the code?

Methods

We trained this model using Reinforcement Learning from Human Feedback (RLHF), using the same methods as InstructGPT, but with slight differences in the data collection setup. We trained an initial model using supervised fine-tuning: human AI trainers provided conversations in which they played both sides—the user and an AI assistant. We gave the trainers access to model-written suggestions to help them compose their responses. We mixed this new dialogue dataset with the InstructGPT dataset, which we transformed into a dialogue format.

To create a reward model for reinforcement learning, we needed to collect comparison data, which consisted of two or more model responses ranked by quality. To collect this data, we took conversations that AI trainers had with the chatbot. We randomly selected a model-written message, sampled several alternative completions, and had AI trainers rank them. Using these reward models, we can fine-tune the model using Proximal Policy Optimization. We performed several iterations of this process

Comments

Popular posts from this blog

computer infomation

computer skill

computer